Loading [MathJax]/jax/output/HTML-CSS/config.js
Volume 7, Issue 3
Local Existence for the Generalized Navier-Stokes-Maxwell Equations

Xinru Cheng, Liangbing Jin & Rong Zou

J. Nonl. Mod. Anal., 7 (2025), pp. 1084-1095.

Published online: 2025-05

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract

In this paper, we establish the local existence for the generalized Navier-Stokes-Maxwell system with the fractional velocity dissipative term $Λ^{2α}u$ and fractional magnetic dissipative term $Λ^{2β}B.$ Moreover, we establish the global existence of strong solutions to this generalized model.

  • AMS Subject Headings

35Q30, 35Q35, 76A03, 76Q05

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JNMA-7-1084, author = {Cheng , XinruJin , Liangbing and Zou , Rong}, title = {Local Existence for the Generalized Navier-Stokes-Maxwell Equations}, journal = {Journal of Nonlinear Modeling and Analysis}, year = {2025}, volume = {7}, number = {3}, pages = {1084--1095}, abstract = {

In this paper, we establish the local existence for the generalized Navier-Stokes-Maxwell system with the fractional velocity dissipative term $Λ^{2α}u$ and fractional magnetic dissipative term $Λ^{2β}B.$ Moreover, we establish the global existence of strong solutions to this generalized model.

}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2025.1084}, url = {http://global-sci.org/intro/article_detail/jnma/24117.html} }
TY - JOUR T1 - Local Existence for the Generalized Navier-Stokes-Maxwell Equations AU - Cheng , Xinru AU - Jin , Liangbing AU - Zou , Rong JO - Journal of Nonlinear Modeling and Analysis VL - 3 SP - 1084 EP - 1095 PY - 2025 DA - 2025/05 SN - 7 DO - http://doi.org/10.12150/jnma.2025.1084 UR - https://global-sci.org/intro/article_detail/jnma/24117.html KW - Navier-Stokes-Maxwell system, fractional dissipative, local existence, global existence. AB -

In this paper, we establish the local existence for the generalized Navier-Stokes-Maxwell system with the fractional velocity dissipative term $Λ^{2α}u$ and fractional magnetic dissipative term $Λ^{2β}B.$ Moreover, we establish the global existence of strong solutions to this generalized model.

Cheng , XinruJin , Liangbing and Zou , Rong. (2025). Local Existence for the Generalized Navier-Stokes-Maxwell Equations. Journal of Nonlinear Modeling and Analysis. 7 (3). 1084-1095. doi:10.12150/jnma.2025.1084
Copy to clipboard
The citation has been copied to your clipboard