- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 22 (2025), pp. 268-306.
Published online: 2025-02
Cited by
- BibTex
- RIS
- TXT
Fourier analysis works well for the finite difference schemes of the linear partial differential equations. However, the presence of nonlinear terms leads to the fact that the method cannot be applied directly to deal with nonlinear problems. In the current work, we introduce an effective approach to enable Fourier methods to effectively deal with nonlinear problems and elaborate on it in detail by rigorously proving that the difference scheme for two-dimensional nonlinear problem considered in this paper is strictly unconditionally stable and convergent. Further, some numerical experiments are performed to confirm the rates of convergence and the robustness of the numerical scheme.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2025-1013}, url = {http://global-sci.org/intro/article_detail/ijnam/23824.html} }Fourier analysis works well for the finite difference schemes of the linear partial differential equations. However, the presence of nonlinear terms leads to the fact that the method cannot be applied directly to deal with nonlinear problems. In the current work, we introduce an effective approach to enable Fourier methods to effectively deal with nonlinear problems and elaborate on it in detail by rigorously proving that the difference scheme for two-dimensional nonlinear problem considered in this paper is strictly unconditionally stable and convergent. Further, some numerical experiments are performed to confirm the rates of convergence and the robustness of the numerical scheme.