- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 22 (2025), pp. 202-225.
Published online: 2025-02
Cited by
- BibTex
- RIS
- TXT
This article introduces the hybridizable discontinuous Galerkin (HDG) approach to numerically approximate the solution of a linear hyperbolic integro-differential equation. A priori error estimates for semi-discrete and fully discrete schemes are developed. It is shown that the optimal order of convergence is achieved for both scalar and flux variables. To achieve that, an intermediate projection is introduced for the semi-discrete error analysis, and it also shows that this projection achieves convergence of order $h^{k+3/2}$ for $k ≥ 1.$ Next, superconvergence is achieved for the scalar variable using element-by-element post-processing. For the fully discrete error analysis, the central difference scheme and the mid-point rule approximate the derivative and the integral term, respectively. Hence, the second order of convergence is achieved in the temporal direction. Finally, numerical experiments have been performed to validate the theory developed in this article.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2025-1010}, url = {http://global-sci.org/intro/article_detail/ijnam/23821.html} }This article introduces the hybridizable discontinuous Galerkin (HDG) approach to numerically approximate the solution of a linear hyperbolic integro-differential equation. A priori error estimates for semi-discrete and fully discrete schemes are developed. It is shown that the optimal order of convergence is achieved for both scalar and flux variables. To achieve that, an intermediate projection is introduced for the semi-discrete error analysis, and it also shows that this projection achieves convergence of order $h^{k+3/2}$ for $k ≥ 1.$ Next, superconvergence is achieved for the scalar variable using element-by-element post-processing. For the fully discrete error analysis, the central difference scheme and the mid-point rule approximate the derivative and the integral term, respectively. Hence, the second order of convergence is achieved in the temporal direction. Finally, numerical experiments have been performed to validate the theory developed in this article.