- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 22 (2025), pp. 139-156.
Published online: 2025-02
Cited by
- BibTex
- RIS
- TXT
In 1-equation URANS models of turbulence, the eddy viscosity is given by $\nu_T = 0.55l(x, t)\sqrt{k(x, t)}.$ The length scale $l$ must be pre-specified and $k(x, t)$ is determined by solving a nonlinear partial differential equation. We show that in interesting cases the spacial mean of $k(x, t)$ satisfies a simple ordinary differential equation. Using its solution in $\nu_T$ results in a 1/2-equation model. This model has attractive analytic properties. Further, in comparative tests in 2d and 3d the velocity statistics produced by the 1/2-equation model are comparable to those of the full 1-equation model.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2025-1007}, url = {http://global-sci.org/intro/article_detail/ijnam/23818.html} }In 1-equation URANS models of turbulence, the eddy viscosity is given by $\nu_T = 0.55l(x, t)\sqrt{k(x, t)}.$ The length scale $l$ must be pre-specified and $k(x, t)$ is determined by solving a nonlinear partial differential equation. We show that in interesting cases the spacial mean of $k(x, t)$ satisfies a simple ordinary differential equation. Using its solution in $\nu_T$ results in a 1/2-equation model. This model has attractive analytic properties. Further, in comparative tests in 2d and 3d the velocity statistics produced by the 1/2-equation model are comparable to those of the full 1-equation model.