TY - JOUR T1 - Efficient Approach for Land Record Classification and Information Retrieval in Data Warehouse AU - C. B. David Joel Kishore and T. Bhaskara Reddy JO - Journal of Information and Computing Science VL - 1 SP - 003 EP - 021 PY - 2018 DA - 2018/03 SN - 13 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22459.html KW - AB - A data warehouse collects the recent and ancient data that are used for creating analytical reports and  put together to  produce  useful  information.  Retrieve  the  information  accurately  from  a  large  source of data  is  a  challenging  task.  A  novel  ANN-FUZZY-CSO  approach  is  proposed  to  predict  and  retrieve  the information  accurately.  First,  the  artificial  neural  network  (ANN)  classifies  the  input  data  for  ordering  the information to construct a database as different classes.  Then, the mongo database will store  a large amount of  data  for  facilitating  easy  maintenance,  prompt  updating  of  land  records  and  security.  After  that,  the optimized fuzzy ranking function is used to retrieve the information from the database based on the optimal fuzzy rules using cat swarm optimization algorithm. The fuzzy rules provide a ranking for an individual field in  the  database.  The  accurate  results  for  the  user  query  are  retrieved  using  cat  swarm  optimization  (CSO) algorithm.  The  optimized  fuzzy  rules  allow  the  users  for  easy  access  to  their  records.  Finally,  the performance is evaluated for the retrieval results