TY - JOUR T1 - Semi analytical solution of MHD asymmetric flow between two porous disks AU - Vishwanath B. Awati and Manjunath Jyoti JO - Journal of Information and Computing Science VL - 1 SP - 003 EP - 015 PY - 2020 DA - 2020/01 SN - 15 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22392.html KW - AB - In this paper, we study MHD asymmetric steady incompressible viscous flow of an electrically conducting fluid between two large stationary coaxial porous disks of different permeability in the presence of  uniform  transverse  magnetic  field.  The  governing  nonlinear  momentum  equations  in  cylindrical  co- ordinates together with relevant boundary conditions are reduced to nonlinear ordinary differential equation (NODE)  using  similarity  transformations.  The  resulting  NODE  is  solved  by  Computer  Extended  Series Solution (CESS) and Homotopy Analysis Method (HAM). The analytical solutions are explicitly expressed by  recurrence  relation  for  determining  the  universal  coefficients.  The  nearest  singularity  is  obtained  at R=4.2981  with  help  of  Domb-Sykes  plot  which  restricts  the  convergence  of  the  series,  using  Euler transformation  the  singularity  is  mapped  to  infinity.  The  obtained  solutions  are  valid  for  all  values  of  the Reynolds number, magnetic parameter and permeability parameter are presented through graphs and tabular forms  to  discuss  the  important  features  of  the  flow.  The  resulting  solutions  are  compared  with  the  earlier literatures which are found to be in good agreement. Further, the region of validity of the series is extended for much larger values of R up to infinity by Pade’ approximants.