TY - JOUR T1 - ADHD Diagnosis and Recognition Based on Functional Classification AU - Fei Zheng and Chunzheng Cao JO - Journal of Information and Computing Science VL - 2 SP - 141 EP - 145 PY - 2020 DA - 2020/06 SN - 15 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22389.html KW - AB - This research starts from the lack of reliable  and effective disease identification biomarkers for attention  deficit  hyperactivity  disorder  (ADHD).  Based  on  the  functional  classification  methods,  including functional  generalized  linear  model  (FGLM),  functional  linear  discriminant  analysis  (FLDA)  method  and functional  principal  component  analysis  (FPCA),  we  establish  models  of  corpus  callosum  (CC)  shape  and give  some  analyses.  The  purpose  is  to  verify  whether  the  corpus  callosum  shape  data  can  be  used  as  an effective  classification  basis  for  disease  discrimination  and  classification,  and  to  provide  a  new  auxiliary discriminant diagnosis idea for ADHD disease discrimination.