- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 37 (2025), pp. 1227-1249.
Published online: 2025-05
Cited by
- BibTex
- RIS
- TXT
We propose a boundary value correction method for the Brezzi-Douglas-Marini mixed finite element discretization of the Darcy flow with non-homogeneous Neumann boundary condition on 2D curved domains. The discretization is defined on a body-fitted triangular mesh, i.e. the boundary nodes of the mesh lie on the curved physical boundary. However, the boundary edges of the triangular mesh, which are straight, may not coincide with the curved physical boundary. A boundary value correction technique is then designed to transform the Neumann boundary condition from the physical boundary to the boundary of the triangular mesh. One advantage of the boundary value correction method is that it avoids using curved mesh elements and thus reduces the complexity of implementation. We prove that the proposed method reaches optimal convergence for arbitrary order discretizations. Supporting numerical results are presented.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2024-0317}, url = {http://global-sci.org/intro/article_detail/cicp/24092.html} }We propose a boundary value correction method for the Brezzi-Douglas-Marini mixed finite element discretization of the Darcy flow with non-homogeneous Neumann boundary condition on 2D curved domains. The discretization is defined on a body-fitted triangular mesh, i.e. the boundary nodes of the mesh lie on the curved physical boundary. However, the boundary edges of the triangular mesh, which are straight, may not coincide with the curved physical boundary. A boundary value correction technique is then designed to transform the Neumann boundary condition from the physical boundary to the boundary of the triangular mesh. One advantage of the boundary value correction method is that it avoids using curved mesh elements and thus reduces the complexity of implementation. We prove that the proposed method reaches optimal convergence for arbitrary order discretizations. Supporting numerical results are presented.