- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this article, we define the $ℓ$-adic homology for a morphism of schemes satisfying certain finiteness conditions. This homology has these functors similar to the Chow groups: proper push-forward, flat pull-back, base change, cap-product, etc. In particular, on singular varieties, this kind of $ℓ$-adic homology behaves much better than the classical $ℓ$-adic cohomology. As an application, we give a much easier approach to construct the cycle maps for arbitrary algebraic schemes over fields. And we prove that these cycle maps kill the algebraic equivalences and commute with the Chern action of locally free sheaves.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19030.html} }In this article, we define the $ℓ$-adic homology for a morphism of schemes satisfying certain finiteness conditions. This homology has these functors similar to the Chow groups: proper push-forward, flat pull-back, base change, cap-product, etc. In particular, on singular varieties, this kind of $ℓ$-adic homology behaves much better than the classical $ℓ$-adic cohomology. As an application, we give a much easier approach to construct the cycle maps for arbitrary algebraic schemes over fields. And we prove that these cycle maps kill the algebraic equivalences and commute with the Chern action of locally free sheaves.